
Picasso: Memory-Efficient Graph Coloring Using
Palettes With Applications in Quantum Computing

S M Ferdous∗, Reece Neff†∗, Bo Peng∗, Salman Shuvo∗, Marco Minutoli∗, Sayak Mukherjee∗,
Karol Kowalski∗, Michela Becchi∗†, Mahantesh Halappanavar∗

∗Pacific Northwest National Laboratory, Richland, WA †North Carolina State University, Raleigh, NC
∗{FirstName.LastName}@pnnl.gov †{rwneff, mbecchi}@ncsu.edu

Abstract—A coloring of a graph is an assignment of colors
to vertices such that no two neighboring vertices have the
same color. The need for memory-efficient coloring algorithms is
motivated by their application in computing clique partitions of
graphs arising in quantum computations where the objective is
to map a large set of Pauli strings into a compact set of unitaries.
We present Picasso, a randomized memory-efficient iterative
parallel graph coloring algorithm with theoretical sublinear
space guarantees under practical assumptions. The parameters
of our algorithm provide a trade-off between coloring quality
and resource consumption. To assist the user, we also propose
a machine learning model to predict the coloring algorithm’s
parameters considering these trade-offs. We provide a sequential
and a parallel implementation of the proposed algorithm.

We perform an experimental evaluation on a 64-core AMD
CPU equipped with 512 GB of memory and an Nvidia A100 GPU
with 40GB of memory. For a small dataset where existing coloring
algorithms can be executed within the 512 GB memory budget,
we show up to 68× memory savings. On massive datasets we
demonstrate that GPU-accelerated Picasso can process inputs
with 49.5× more Pauli strings (vertex set in our graph) and
2,478× more edges than state-of-the-art parallel approaches.

Index Terms—Graph coloring, quantum computing, memory-
efficient algorithms.

I. INTRODUCTION

Given a graph G(V,E), the problem of graph coloring is
to assign a color to each vertex such that no two adjacent
vertices are assigned the same color, while minimizing the
number of colors used. Graph coloring is one of the central
problems in combinatorial optimization with applications in
various scientific domains [1]. Many algorithmic techniques
have been developed to solve coloring in sequential, parallel,
and distributed settings for many variants of the coloring prob-
lem [2]. All of these algorithms are memory-demanding since
they require loading the entire graph and several auxiliary data
structrues into the memory. For massive graphs, especially on
limited-memory accelerators (GPUs), these algorithms easily
exhaust the available memory, and the problem is exacerbated
for dense graphs due to quadratic scaling of edges. Our work
considers graphs that are ≈ 50% dense (|E| ≈ |V |2/2) for
which the current graph coloring approaches [3]–[6] quickly
run out of memory when processing large instances (§ VII).

Our quest for memory-optimized coloring techniques stems
from an application of quantum algorithms to computational
chemistry. Quantum computers have the potential to offer new
insights into chemical phenomena that are not feasible with

classical computers. To utilize quantum approaches effectively,
it is indispensable to encode chemical Hamiltonians and
chemical-inspired wave function ansätze (i.e., the assumptions
of the wave function form) in a quantum-compatible represen-
tation, while adhering to the proposed theoretical framework.
However, the direct encoding of chemical Hamiltonians and
typical chemical-inspired ansätze, which usually grows as
high-degree polynomials, is unscalable. This directly affects
the efficiency and applicability of the corresponding quantum
algorithms. For example, transforming the chemical Hamil-
tonian from the second quantization to spin operators yields
Pauli strings (tensor products of 2 × 2 Pauli and identity
matrices) that scale as O(N4), where N is the number of
basis functions spanning the Hamiltonian [7]–[9].

One near-term solution to improve the scaling of quantum
algorithms is the unitary partitioning and its variants, which
aim to find compact representations of a linear combination of
Pauli strings (§ II). These strategies, predominantly based on
the graph analysis of Pauli strings, typically yield a reduction
ranging from 1/10 to 1/6 in the number of alternative unitaries
for small test cases. The unitary partitioning problem reduces
to a graph coloring problem, where the vertices of the graph
represent the Pauli strings, and the edges represent whether
these strings obey an anticommute relation (§ II). These graphs
are large and dense. Therefore, the state-of-the-art approaches
for the unitary partitioning problem can only solve small
molecules with a few thousand Pauli strings, whereas the
desired scale is on the order of O(106 ∼ 1012) of Pauli strings.

Building on recent developments in sublinear algorithms
for graph coloring [10], we introduce a novel parameterized
coloring algorithm, Picasso, where the parameters of the al-
gorithm provide a trade-off between the quality of the solution
(i.e., the number of colors used) and the resource consumption
of the algorithm. We theoretically prove that Picasso has
a sublinear space requirement (§ IV), making it attractive to
implement on GPUs. We empirically show that Picasso can
solve trillion edge graph problems arising from molecules with
more than 2 million Pauli strings in under fifteen minutes.
Many of the results we report are the first-of-its-kind for the
corresponding molecule and basis set. Since our parametric
algorithm considers the target number of colors, we show that
high-quality coloring can be achieved by an aggressive choice
of parameters (§ VII-A1). We design a machine learning
prediction model to determine the parameters configuration to

1

ar
X

iv
:2

40
1.

06
71

3v
2

 [
cs

.D
C

]
 1

2
Fe

b
20

24

be used to achieve a given trade-off between coloring quality
and resource requirements (§VI).

Although Picasso is designed to solve a specific prob-
lem in quantum computing, it can be used in a generalized
graph setting where memory efficiency is needed. The main
contributions of this work are:

• We introduce a first-of-its-kind graph coloring algorithm
Picasso to address the unitary partitioning problem in
quantum computing with demonstrations for dense inputs
with up to two million vertices and over a trillion edges.

• We prove that, under a practical assumption Picasso
has sublinear memory requirement with high probability.

• We propose a machine learning approach to predict the
configuration of the algorithm’s parameters that allows
achieving a given trade-off between coloring quality,
runtime and memory requirements

• We demonstrate the practical efficiency of our approach.
The GPU-accelerated Picasso enables to process inputs
with 49.5× more Pauli strings and 2, 478× more edges
than existing state-of-the-art parallel approaches.

II. PROBLEM FORMULATION

Our work is driven by the challenge of identifying com-
pact unitary representations of chemical Hamiltonians and
strongly correlated wave functions to enable accurate and
efficient quantum simulations. Typically, this challenge can be
abstracted as determining how to solve a clique partitioning
problem efficiently. In this section, we delve into the graph
formulation of the problem.

A. Quantum computing problem

In quantum simulations aimed at elucidating physical and
chemical phenomena, both the wave function and the system
Hamiltonian play crucial roles. The wave function encodes the
probabilistic state of a quantum system, facilitating the com-
putation of various physical properties, whereas the system
Hamiltonian governs the temporal evolution of the system’s
states according to quantum mechanical principles and repre-
sents the total energy of the system. In this context, the wave
function is responsible for state preparation, and the system
Hamiltonian controls the evolution of the state.

In these simulations, the processes of state preparation
and evolution must be conducted through unitary operations.
These are operations that maintain the norm (magnitude) of the
state vector in Hilbert space, ensuring that the total probability
remains one. To accomplish this, both the system Hamiltonian
and the wave function generator must be reformulated as
either a unitary operator or a linear combination of unitary
operators. This reformulation is crucial because unitary op-
erations are reversible and preserve the quantum information
within the system, making them indispensable for the coherent
manipulation of quantum states in simulations. In small-scale
demonstrations, one could employ, for instance, the Jordan-
Wigner, Bravyi-Kitaev, or parity techniques [11], [12], which
rewrite the Hamiltonian and the wave function generator as
a combination of Pauli strings, each being a unitary. A Pauli

string represents a tensor product of a series of 2 × 2 Pauli
matrices, σx, σy, σz , and the 2×2 identity matrix, I . However,
these techniques encounter the curse of dimensionality in
large-scale applications. For instance, in molecular applica-
tions, reformulating the molecular Hamiltonian represented
in the N -spin-orbital basis set would require O(N4) Pauli
strings. The number of the Pauli strings needed to reformulate
the highly correlated wave function ansätze, such as the non-
unitary coupled-cluster ansätz that include single and double
excitations, would be even higher, i.e. O(N7∼8). The curse of
dimensionality makes the subsequent quantum simulation, es-
pecially quantum measurements, extremely challenging. Com-
pact unitary representation for both the Hamiltonians and the
wave function generators addresses the curse of dimensionality
and the associated quantum measurement overhead.

Mathematically, given a set of n Pauli strings, P =
{P1, P2, . . . , Pn} each of which is of length N , along with
their coefficients {p1, p2, . . . , pn}, we aim to compute a
smaller set of unitaries {U1, U2, . . . , Uc} with the correspond-
ing coefficients {u1, u2, . . . , uc}, such that:

c∑
i=1

uiUi =

n∑
j=1

pjPj , c < n. (1)

B. Connection to Clique partitioning and Graph coloring

A straightforward way for satisfying Eq. (1) is enabled
through the following condition for m Pauli strings [13]:

m∑
i,j=1,i̸=j

p∗i pjPiPj = 0, m ≥ 2, (2)

for which a necessary condition is enabled by the anticommute
property between any two Pauli strings in the given set, i.e.,

{piPi, pjPj} = p∗i pjPiPj + p∗jpiPjPi = 0, i ̸= j. (3)

The above relationships can be translated to a clique parti-
tioning and coloring problem in a graph as follows. Given a
set of Pauli strings, P , we generate a graph G(P,E), where
E is the set of all possible (unique) pairs of Pauli strings in
P that anticommute, i.e., satisfy the Eq. (3). A clique (or a
complete subgraph) of a graph is a set of vertices such that
every (unique) pair of vertices in that set are connected with
an edge in G. A clique in G thus corresponds to satisfying
Eq. (2). Our goal is to generate a set of cliques, as small as
possible, in G, which forms a partition of P . We formally
define the problem as follows.

Definition 1 (Clique partitioning): Given a set of Pauli
strings, P = {P1, P2, , . . . , Pn}, and a graph G(P,E) gen-
erated from P , the clique partitioning problem is to compute
a collection of cliques, U = {U1, . . . , Uc}, where

⋃
i Ui = P ,

and Ui ∩ Uj = ∅, for i ̸= j that minimizes the number of
cliques, i.e., c.

The clique partitioning problem is NP-Complete [14], which
makes any optimal polynomial time algorithm unlikely. This
problem is equivalent to the well-known graph coloring prob-
lem, which requires finding the smallest set of colors such that
each vertex of the graph is assigned exactly one color from the

2

P8: YXYYP0: IIII

P9: XYXXP1: XYXY

P10: YYXXP2: YYXY

P11: XXXXP3: XXXY

P12: YXXXP4: YXXY

P13: XYYXP5: XYYY

P14: YYYXP6: YYYY

P15: XXYX
P16: YXYX

P7: XXYY

P8: YXYYP0: IIII

P9: XYXXP1: XYXY

P10: YYXXP2: YYXY

P11: XXXXP3: XXXY

P12: YXXXP4: YXXY

P13: XYYXP5: XYYY

P14: YYYXP6: YYYY

P15: XXYX
P16: YXYX

P7: XXYY

Fig. 1: An overview of the mapping problem solved as clique partition using graph coloring of the conflict graph for H2
molecule with sto-3g basis function.

set, and no two endpoints of an edge have the same color. The
clique partitioning of a graph G is equivalent to the coloring
of the complement graph G′ [15]. Let G′(V,E′) be the com-
plement of a graph G(V,E), where the vertex set remains the
same but the edge set, E′ = {{V ×V }\E}\{{v, v} : v ∈ V }.
Since the vertices of G′ with the same color must represent a
clique in G, it is easy to verify that any proper coloring of G′

provides a feasible solution to the clique partitioning of G. We
further note that when |E| ≥ |E′|, computing clique partition-
ing via coloring of the complement graph is more efficient.

In this paper, we solve the unitary partitioning problem by
formulating it as a clique partitioning problem, which in turn
is solved using graph coloring on the complement graph. An
illustration of the process is shown in Fig.1 using the clique
partitioning to generate a compact representation of the H2
molecule with sto-3g basis function, with N = 4, as an
example. We begin with a set of Pauli strings as vertices and
compute the edges of the graph using Eq.3. We then construct
the complement graph and color it. Finally, we output the
partition according to the color classes. In the example, 17
Pauli strings are shrunk to a set of 9 unitaries.

III. RELATED WORK

Mapping Pauli Strings: To facilitate efficient term-by-term
measurement schemes in NISQ devices, efforts to minimize
the number of terms representing the Hamiltonian and wave
function generators have been essential. Previous develop-
ments in hybrid quantum-classical algorithms have primar-
ily focused on classically grouping Pauli strings to reduce
quantum measurements. Drawing inspiration from the concept
of Mutually Unbiased Bases (MUB) in quantum information
theory [16], [17]—which is associated with maximizing the
information gained from a single measurement—early endeav-
ors have leveraged the commutativity of Pauli strings. This
includes qubit-wise commutativity [18], general commutativ-
ity [9], [19], and unitary partitioning [20], to define the edges
when translating the grouping problem to a clique partitioning
and coloring problem in a graph composed of these Pauli
strings.

For general molecular cases explored in quantum simula-
tions, these strategies have the potential to group (4Nq − 1)
Nq-qubit Pauli strings (excluding the identity string) into no
more than 3Nq groups, with further reductions to O(N2∼3

q)

possible, albeit at the cost of introducing additional one/multi-
qubit unitary transformations before measurement. However,
the polynomial scaling inherent in these grouping schemes
renders script-based large-scale applications unscalable. This
necessitates the development of high-performance computing
libraries specialized in graph analysis for this purpose.
Graph Coloring: Graph coloring has been studied extensively
in literature. The application of graph coloring in automatic
(or algorithmic) differentiation has led to the study of different
types of graph coloring problems [2], and a software library of
serial implementations called ColPack [3]. Sequential coloring
algorithms are based on greedy methods, which, given an
ordering of the vertices, employ the smallest feasible color for
each vertex. In the worst case and for general graphs, all these
ordering-based methods require ∆+1 colors, where ∆ is the
maximum degree of the graph. The ordering methods include
Largest Degree First (LF), Smallest Degree Last (SL), Dy-
namic Largest Degree First (DLF), and Incidence Degree (ID).
While greedy coloring techniques provide reasonable quality
in sequential settings, these algorithms have little to no concur-
rency in practice. For parallel settings, there are two primary
algorithmic techniques: i) heuristics building on the idea of
finding maximal independent sets, introduced in the pioneering
work of Luby [21] and extended by Jones and Plassmann
[22] (JP), ii) heuristics leveraging speculation, where parallel
threads speculatively color vertices using the least available
color. Conflicts resulting from concurrent execution are then
corrected in an iterative manner [23]. Similar approaches have
been extended to manycore or GPU implementations [5],
[24], [25], and distributed-memory algorithms and implemen-
tations [26], [27]. In § VII we compare Picasso for quality
(against [3]) and performance (against [5], [25]).

The existing parallel graph coloring algorithms, especially
the single-node GPU solutions, fail to solve large graph
problems due to memory limitations. The graphs need to
be loaded into the GPU memory along with auxiliary data
structures such as an array of “forbidden colors”, which can
easily exhaust the available memory. The graphs generated by
our target applications are large and dense. Thus, there exists
a need for coloring algorithms that are memory efficient.
Graph Coloring in sublinear space: The recent seminal
work of Assadi, Chen and Khanna [10] (ACK, henceforth),
stduied the (∆ + 1)-coloring problem with sublinear space

3

and time constraints. They developed the Pallete Sparsification
Theorem, which reduces the ∆+1-coloring of a graph G(V,E)
to a list-coloring problem in a subgraph of G with only
O(|V | log2 |V |) edges. Applications of this theorem is shown
by designing algorithms in dynamic semi-streaming in a single
pass, sublinear query and MPC models. In terms of semi-
streaming algoirthm, the only known (∆+1)-coloring before
ACK’s algorithm [10] was the O(log |V |) pass distributed
algorithm of Luby [21], [28], simulated in streaming setup.
In semi-streaming model, ACK uses palette size as ∆ + 1,
list size of colors as O(log |V |) for each vertex, and a special
post-processing step. In this paper, we put ACK’s algorithm
in practice by non-trivial modifications listed as follows.

i) The palette size in ACK’s algorithm is ∆+1, which limits
the practicality of the algorithm on problems operating
on large dense graphs, like the one we considered. Our
graphs (original and complement) are dense (∆ > |V |/2).
One would require a fraction of |V | to color all the
vertices, as shown in Table III in § VII-A1 for our dataset
(<= 16% of |V |). Our algorithm allows users to specify
a variable palette size. Modifying the analysis of [10], we
proved that if the ratio ∆/P is bounded (by log |V |), a
sublinear space is guaranteed. This assumption holds for
our graphs since this ratio is a constant for our use cases.

ii) The conflict graph coloring algorithm of [10] decomposes
the graph and then applies a greedy coloring, an almost
clique coloring, and a maximum matching-based coloring
on the decomposition. We provide an efficient imple-
mentation of list-greedy-based coloring that dynamically
colors the vertices based on their color list size.

iii) ACK’s streaming algorithm is single-pass. For valid col-
oring, the single iteration algorithm would require a large
palette size, degrading the solution quality. We address
this issue with an iterative approach, where in each
iteration, we attempt to color the uncolored vertices from
the previous iteration. Our proof for sublinear space holds
for each iteration.

IV. OUR ALGORITHM

TABLE I: Notation used in the paper.

Symbol Description

P Set of Pauli strings
N Length of each Pauli string
ℓ Iteration counter
Gℓ = {V,E} Complement graph from V ⊆ P at it. ℓ
n number of vertices, n := |V |
Gc = {Vc, Ec} Conflict graph, Vc ⊆ V
δ(v) Degree of vertex v, with neighbor set: adj(v)
P Palette size, Palette={(ℓ− 1)P, 1, . . . , ℓP − 1}
C Final number of colors, C ≤ P
α Multiplicative factor for List size
L List Size, set to α log |V |
β Weighting factor for bi-objective optimization

Picasso, listed in Algorithm 1, attempts to color the
graph by initially assigning to each vertex a list of candidate
colors chosen uniformly at random from a palette of P colors

Algorithm 1 Picasso: Palette-based graph coloring

Input: A graph G = (V,E)
Output: A color array, with a valid coloring of G

1: Initialize the color array
2: ℓ = 1 ▷ The iteration number
3: Gℓ ← G
4: while V is not empty do
5: (Pℓ,Lℓ)← Initialize palette and list size for Gℓ

6: colList← assign rand list colors(Pℓ,Lℓ, Gℓ)
7: Gc ← construct conflict graph(colList, Gℓ)
8: color unconflicted vertices(V \ Vc, colList, colors)
9: Vu ← color conflict graph(Gc, colList, colors)

10: ℓ = ℓ+ 1
11: Gℓ ← subgraph induced by Vu in G
12: V ← Vu

{0, 1, . . . ,P − 1}, and progressively assigning to each vertex
a color from its color list without violating the graph coloring
constraint. It takes a graph G as input and computes a valid
coloring of G in the color array. The algorithm starts with
the original graph G, and iteratively computes coloring for a
subgraph. In each iteration (ℓ), it estimates the palette size
(Pℓ) and list size (Lℓ) for the current subgraph Gℓ (Line 5).
Next, it assigns to each vertex a list of candidate colors chosen
uniformly at random from the palette (Line 6). For each vertex,
we record the list of colors in the colList data structure, where
colList(u) refers to the list of colors assigned to vertex u. We
build the conflict subgraph, which consists of the edges that
share a common color in their corresponding lists (Line 7)
using the colList array. We then color the unconflicted vertices
using an arbitrary color from their color list (Line 8), and
attempt to color the conflict graph (Line 9). The vertices
uncolored in the current iteration are denoted as Vu. We then
compute the subgraph induced by Vu and continue if Vu is
non-empty. We note that the algorithm in every iteration starts
with a new palette of colors and attempts to color the subgraph
with these new colors. The colors of an iteration are not reused
in the subsequent iterations. We can ensure that by defining
the palette set as {(ℓ− 1)P, . . . ℓP} at iteration ℓ.

We now describe the construction and coloring of the
conflict graph at iteration ℓ. For ease of presentation, we omit
the subscript ℓ.

A. Conflict Graph Construction

An edge (u, v) in G is conflicted if its two endpoints share
a color, i.e., colList(u)∩colList(v) ̸= ∅. If the color values in
colList are sorted, we need O(L) time to check for a conflict
edge. In our application, we are not provided with the graph.
Instead, we are given a set of Pauli strings P that defines the
vertex set of G. We use a bit encoding scheme to dynamically
derive the edges from Pauli strings in a memory-efficient way.
Given two Pauli strings Pi and Pj , whether an edge exists
between them (in our case, a non-edge) can be checked using

4

Eq. 3. Here, a Pauli string consists of N characters, where
each character corresponds to a 2× 2 Pauli matrix:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(4)

When directly implementing the anti-commute condition given
by Eq. 3, we must carry out N − 1 tensor products for each
string, followed by two matrix multiplications for matrices Pi

and Pj . However, the inherent properties of Pauli matrices
allow us to check this condition efficiently. Specifically, any
pair of Pauli matrices will either commute or anti-commute.
Importantly, two distinct Pauli matrices will anti-commute

{σi, σj} = 0 if σi ̸= σj ̸= I, (5)

which is simplified to an element-wise character comparison.
The anti-commutation property can be extended to Pauli

strings. This is done by counting the element-wise character
comparisons corresponding to the anti-commute relation. It is
worth noting that the anti-commutation relationship between
two Pauli strings is determined by phase ±i. Only an odd
number of element-wise anti-commuting character compar-
isons will result in a non-vanishing phase.

Further reduction in the number of comparisons can be
achieved using bit representations. Specifically, we make
an observation: as there are only four possible matrices
(σx, σy, σz, I), we can encode an 8-bit character datatype to
a smaller representation using bits. If we encode each Pauli
matrix into a 2-bit value, we would still need to perform N
comparisons to count the number of mismatches. To determine
a complement edge, we only check whether the number of
mismatches is even or odd, which is determined by observing
the least significant bit of the count value. With this, we
need an encoding that causes a bit flip only when there is
a mismatch between σx, σy, or σz .

To accomplish this, we implement an encoding scheme
similar to an inverse one-hot encoding, where matrices σx, σy,
and σz are assigned 110, 101, and 011, and I is assigned 000,
respectively. We perform a bitwise AND operation between the
encoded Pauli strings and perform a popcount operation to
count the number of ‘1’ bits. Due to this encoding scheme, the
only time the least significant bit is flipped in the popcount
is during a mismatch, allowing us to track whether there is
an odd or an even number of mismatches. Speedups from
the encoded implementation on CPU range from 1.4 to 2.0×,
including the encoding overheads.

B. Coloring the Conflict Graph

Once we compute the conflict graph, Gc we are required
to color Gc using the list of colors assigned to each vertex.
Here, we discuss two possible approaches to achieve that.
Static order schemes: Given an ordered set of vertices, we
iterate through the set and attempt to color each vertex with
the first available color in its list that does not conflict with
the colors already assigned to its neighbors. We may use

popular [2] vertex order such as the Natural, Largest Degree
First, Smallest Degree Last, or Random ordering.
Dynamic vertex order scheme: A second approach is to color
the conflict graph using the lists in a dynamic order [29].
Here, we describe a dynamic greedy algorithm from [29] for
the list coloring and discuss an efficient implementation of
it. The algorithm attempts to color the vertices that are most
constrained, i.e., it colors a vertex according to the size of
the list. When a vertex is assigned a color from its list, the
assigned color is removed from the list of all the neighbor
of the vertex, rendering a dynamic order on the vertices. A
naı̈ve implementation of the dynamic list coloring algorithm
would require O(|Vc|2 + |Ec|L) time. We have at most |Vc|
iterations, and in each iteration, we need to find the vertex
with the smallest current list size in O(|Vc|) time, then color
the vertex and mark this color removed from all its neighbors
in O(δ(v)L) time, where δ(v) is the degree of vertex v.
Summing over |V | gives us the total time. We can reduce it to
O((|Vc|+|Ec|L) log |Vc|) using a minimum heap data structure
with logarithmic update_key operation. Next, we present
an efficient implementation in Algorithm 2 that eliminates the
log |Vc| factor by using the bucketing technique.

Algorithm 2 Greedy list-coloring of conflict graph, Gc

Input: Conflict graph Gc, color list colList(v), ∀v ∈ Vc.
Output: A coloring of Gc using the lists, and the uncol-
ored vertex set, Vu.

1: B ← An array of bucket lists
2: ▷ Creating the initial buckets
3: for v ∈ V do
4: Insert v to B[colList(v).size()]
5: Mark all vertices of Gc as unprocessed
6: Vu ← ∅
7: while ∃ an unprocessed vertex do
8: Pick a vertex, v from the lowest bucket
9: Color v from colList(v) chosen uniformly at random,

say c
10: Remove v from its bucket and mark it as processed
11: for u ∈ adj(v) do
12: ▷ Neighbors of v in Gc

13: if u is uncolored and c ∈ colList(u) then
14: Remove c from colList(u)
15: if colList(u) is empty then
16: Mark u as processed
17: Vu = Vu ∪ u
18: Continue
19: Remove u from its current bucket
20: Insert u to B[colList(u).size()]

Algorithm 2 stores the vertices of Gc in an array of buckets
B, according to the size of their color lists. The bucket at B[i]
holds the vertices v ∈ V , whose size of the colList(v) is i.
We define the lowest bucket from the array as the non-empty
bucket with the smallest index. The algorithm marks all the
vertices as unprocessed and continue until all the vertices are
processed. In each iteration, the algorithm finds the lowest

5

bucket and chooses a vertex uniformly at random from it.
This vertex is colored with an arbitrary color from its list
and marked as processed. We say the color is c. Then, the
algorithm scans all neighbors of this vertex in Gc and removes
c if it exists in their color list. If any neighbor’s list becomes
empty, we mark this neighboring vertex as processed. The
runtime of Algorithm 2 is O((|Vc|+|Ec|)L), since there might
be at most |Vc| iterations and in each iteration we require O(L)
time to find the lowest bucket. The removals of a vertex from
a bucket (Lines 10 and 19) can be implemented in constant
time by an auxiliary array that stores the location of the vertex
in the bucket, while the removal of a color from colList
(Line 14) takes O(L). Thus, processing a chosen vertex
requires O(δ(v)L) time, and summation over all vertices gives
the total time.

C. Analysis of the Algorithm

Building on the analysis in [10], we now show that, under
reasonable assumptions on palette size, with a high probability
our algorithm constructs in each iteration a conflict graph
that is sublinear in the graph size. Following the previous
section, we will omit the subscript ℓ since the results hold
for any iteration. Recall that Gc is the conflict subgraph
computed from G and n := |V |. We will require the following
concentration results.

Lemma 1 (Chernoff-Hoeffding bound [30]): Let
X1, . . . , Xm be m independent binary random variables
such that Pr(Xi) = pi. Let X =

∑m
i=1 Xi and µ = E[X].

Then the following holds for 0 < γ ≤ 1:

Pr [X ≥ (1 + γ)µ] ≤ e

(
−µγ2

3

)
(6)

Lemma 2: At iteration, ℓ, let G(V,E) be the graph to be
colored with Palette size P , and the color list size for each
vertex O(log n). Let the average and maximum degree of G be
d̄ and ∆, respectively. Then, the total number of colors found
by Algorithm 1 is

∑
ℓ Pℓ. At iteration ℓ of the Algorithm 1,

the following relations hold:

2.1) Expected degree of vertex v ∈ Gc is O(δ(v)P log2 n).
2.2) Assuming ∆

P = O(log n), the maximum degree and
the maximum number of edges in Gc is O(log3 n) and
O(n log3 n) respectively with high probability.

2.3) Assuming d̄
P = O(log n), the expected number of edges

in Gc is O(n log3 n).
Proof: Due to the design of the algorithm, the total

number of colors used is:
∑

ℓ Pℓ.
1) Let us consider vertex v, and let T be the size of the

color list for v. Let Xv,u be a binary random variable that
takes 1 if the edge (v, u) is in the conflict graph Gc, and
0 otherwise. Also, let Xv =

∑
u∈adj(v) Xv,u. Let us fix

the colors in the list of v as c1, c2, . . . cT . The probability
that at least one of these colors is shared with a neighbor,
u, i.e., Pr(Xv,u = 1) is O(TP). So the expected degree
of v is E[Xv] =

∑
u∈adj(v)O(

T
P) = O(δ(v)P log2 n), since

T = O(log2 n).

2) Since the maximum degree is ∆, the maximum ex-
pected degree in G is O(∆P log2 n) = O(log3 n) according
to Lemma (2.1) and our assumption on the ratio δ(v)

P . We
will now show the high probability concentration result. We
note that all Xv,us are independent of each other. So, using
the Chernoff-Hoeffding bound (Lemma 1) and setting γ = 1,
the probability that Pr[Xv ≥ 2(log3 n)] ≤ e−(log3 n)/3 ≤
O(n− log2 n). So with high probability the maximum degree
of v is O(log3 n) assuming the ratio ∆

P = O(log n).
3) We can further improve the bound by using the average

degree (d̄) of G rather than the maximum degree on our
assumption. Let Y be the random variable representing the
sums of degrees of the graph at level ℓ. From Lemma (2.1),
the expected sums of degrees,

E[Y] =
∑
v∈n

Xv =
∑
v∈V

O
(
δ(v)

P
log2 n

)
=

∑
v∈V

O
(
d̄

P
log2 n

)
= O(n log3 n).

This relationship follows since the sums of degrees of a graph
can be replaced with sums of average degrees. The final
equality follows from our assumption, d̄

P = O(log n).

V. PARALLEL GPU IMPLEMENTATION

Algorithm 3 GPU Conflict Graph Construction

Input: Pauli strings, V and their list of colors colList
Output: Conflict graph Gc in CSR format

1: AvailMem = min(2|V |(|V | − 1), MaxAvailGPUMem)
2: Allocate AvailMem on the GPU
3: Vedgecount, Ecoo ← build unordered coo(colList, V)
4: Voffsets ← exclusive sum(Vedgecount)
5: if |Ecoo| ≤AvailMem/2 then
6: Gc ← generate csr gpu(Voffsets, Ecoo)
7: else
8: Gc ← generate csr cpu(Voffsets, Ecoo)

The conflict subgraph construction on Line 7 of Algorithm 1
significantly dominates the execution time for our application.
Because of this, we implemented a parallel GPU version
to reduce the bottleneck. We note that, despite the original
graph being dense, in almost all the cases the conflict graph
is expected to be significantly sparse (details in §VII-A1).
Although the pairwise comparisons of vertices are independent
of each other, due to the unknown number of conflicting
edges at runtime, we designed an implementation capable
of generating the conflict graph in Compressed Sparse Row
(CSR) format that is not only efficient in memory usage during
construction but also enables contiguous access of memory for
processing the conflict graph. We present this implementation
in Algorithm 3. As a preprocessing (now shown in the Al-
gorithm 3), we copy the input data on the GPU with a size
of NL|V |/10 4-byte values for the encoded Pauli strings and

6

their list of colors, and initialize 2|V | edge offset counters.
We use 8 bytes for the counter if |V |2 ≥ 232; otherwise, the
offset counters are 4-bytes. All remaining available memory
on the GPU, or the worst-case edgelist size of 2|V |(|V | − 1),
whichever is smaller, is then allocated to store the unordered
edgelist, and the conflict graph generation kernel is launched
on the GPU. For this kernel, each thread processes one of the
|V |(|V | − 1)/2 possible edges and, and inspect whether the
edge is both a complement and conflicting. If so, the edge
is written in the output and the respective edge offsets are
incremented. After the kernel execution, we are left with an
unordered edge list of size |Ec|.The edges of the complement
graph are determined independently during conflict graph
construction, and the complement graph does not need to be
stored on the GPU memory. Since for CSR representation each
edge is stored twice, if |Ec| used less than half of the available
GPU memory, then we generate the CSR output on the GPU.
Otherwise, we read the unordered edge list and convert it
to CSR on the host CPU instead. We attempted warp-level
reduction on the offset values to condense the number of global
atomic operations, but the number of conflicting edges was
much smaller than the total number of possible edges (≤5%
in most cases), so the overhead outweighed the benefits. To
get an estimation for |Ec| to preallocate memory on the GPU,
we developed a machine learning based predictor, which we
describe next (§VI).

VI. PREDICTION OF PALETTE SIZE

We employ a machine learning (ML) based methodology
to predict the palette size P and α values to simultaneously
minimize the number of final colors C and the number of
conflicting edges |Ec|. As these two objectives are conflicting,
we introduce β as the weighting factor to determine the
balance between minimizing C and |Ec|. The goal for this
prediction is to find the optimal combination of (P, α) to
minimize (β · C + (1− β) · |Ec|), i.e.,

min
(P,α)

(β · C + (1− β) · |Ec|). (7)

We generate a dataset by varying values for percentile palette
size, P ′ = P

|V |×100 (as a percentage of the number of vertices
|V | in the complement graph G′) and α to perform a grid
search. We capture the (P ′, α) combinations that minimizes
Eq. (7) for different values of β. Finally, this dataset trains
regression models to predict the (P ′, α) for a given graph G
and β. We train the regressor with several molecules and test
its accuracy on a new set of molecules. The methodology can
be summarized as follows:
• Step 1: For a given graph G(V,E), perform sweeps on
(P ′, α) and compute (C, Ec).

• Step 2: For a particular value of β, compute objective in
Eq. (7), and select the optimal choice of (P ′, α)opt.

• Step 3: Run Step 2 for different values of β, and collect
corresponding values of (P ′, α)opt to construct the data-set
for the graph G.

• Step 4: Run Steps 1-3 for the graphs correspond to different
molecules to construct the complete training set.

• Step 5: Train the regressor model with (P ′, α) as outputs
of the model for a given graph G and β.

• Step 6: After the model is trained, we provide a new graph
and a particular choice of β, for which, the model predicts
an optimal choice of (P ′, α) that optimizes for Eq. (7).

Model Training and Results: We generated a dataset for
the molecules provided in Table II for percentile palette sizes
P ′ ∈ {1%, 2.5%, 5%...., 20%} and α ∈ {0.5, 1.0,, 4.5}.
We capture the ⟨P ′, α⟩ combinations that minimized Eq.
(7) for β ∈ {0.1, 0.2,, 0.9}. From the dataset, we used
the first five molecules for training and the last two for
testing the regression analysis. We experimented with several
linear (ridge, lasso) and nonlinear predictors (svm-kernel-
rbf, decision trees, random forests) [31]. For given input of:
(β, V, E), the nonlinear regression models performed better
in predicting the ideal ⟨P ′, α⟩ combination. In particular, the
random forest regressor provided the best performance with
multiple iterations, with a mean absolute percentage error
(MAPE) of 0.19 and an R-squared value of 0.88 over 100
iteration runs. We selected the number of trees (estimators) to
be 100 and the maximum tree depth of 20. This methodology
provides Picasso a means to predict optimal choice of
palette and list sizes for an input with values for (β, V, E),
where β provides the trade-off. We note that while our model
is trained specifically for the dense input graphs used in this
work, it can be extended to any family of inputs that can be
well characterized with data as described above.

VII. EXPERIMENTAL EVALUATION

We evaluate the performance and quality of the solution
obtained using Picasso to the current state-of-the-art ap-
proaches. For our evaluation, we used a machine equipped
with a 64-core AMD EPYC 7742 CPU, 512GB host DDR
memory, and an NVIDIA A100 GPU with 40GB of HBM
memory. Table II lists the datasets we selected for our eval-
uation. These systems are chosen with a deliberate intent to

TABLE II: Molecule Dataset in our experiment

Molecule Name # of qubits # of Pauli terms # of edges

H6 3D sto3g 12 8,721 19,178,632
H6 2D sto3g 12 18,137 82,641,188
H6 1D sto3g 12 19025 90,853,544
H4 2D 631g 16 22529 127,024,320
H4 3D 631g 16 34481 297,303,496
H4 1D 631g 16 42449 450,624,984
H4 2D 6311g 24 154641 5,979,614,600

H4 3D 6311g 24 245089 15,017,722,736
H8 2D sto3g 16 271,489 18,513,622,112
H8 1D sto3g 16 274,625 18,944,162,720
H4 1D 6311g 24 312817 24,464,823,272
H8 3D sto3g 16 419,457 44,149,092,736
H6 3D 631g 24 554,713 77,027,619,060
H10 3D sto3g 20 1,274,073 410,446,230,804

H6 2D 631g 24 2,027,273 1,028,164,570,684
H6 1D 631g 24 2,066,489 1,068,358,440,628
H10 2D sto3g 20 2,093,345 1,108,417,973,696
H10 1D sto3g 20 2,101,361 1,116,895,244,280

7

encompass a broad spectrum of quantum scenarios. By picking
Hn molecular systems with varying values of n = 4, 6, 8, 10,
we aim to ensure diversity in system size, ranging from simple
to complex structures, enabling us to gauge the algorithm’s
scalability and performance across different magnitudes. The
incorporation of three spatial configurations for each Hn

molecular system, namely 1D, 2D, and 3D, introduces dimen-
sional variability, shedding light on the tool’s capability to
manage problems with different geometric complexities and
symmetries. As the size of the Hn system increases, so does
the intricacy of electron-electron interactions and correlations.
By integrating systems of different sizes, the goal is to
critically assess the tool’s proficiency in addressing varying
degrees of electron correlation, a pivotal aspect in quantum
calculations. Moreover, this diverse selection, spanning across
multiple system sizes and dimensions, serves as an effective
stress test for Picasso. It not only offers insights into its
performance benchmarks but also aids in pinpointing potential
areas of enhancement, ensuring a comprehensive evaluation
of its reliability and robustness. We classify our datasets into
three categories: i) Small (≤ 10 Billion edges); ii) Medium
(≤ 1 Trillion edges); and iii) Large (> 1 Trillion edges). We
evaluate our implementation by considering:

• Performance: We present a detailed performance study
of the execution time of Picasso and compare it against
two of the state-of-the-art GPU implementations of the
distance-1 coloring: i) Kokkos-EB: edge-based coloring
included as part of the kokkos-kernels [4], [25], [32],
and ii) ECL-GC-R: shortcutting and reduction based
heuristics for JP-LDF [5], [33].

• Quality: We assess the quality of coloring obtained by
Picasso with respect to sequential greedy coloring
implementations in ColPack [2], [3], and GPU implemen-
tations of Kokkos-EB, and ECL-GC-R. We also study the
quality versus memory trade-offs in these implementa-
tions.

• Parameter Sensitivity: We study the impact of palette
size (P) and color list size (α,L) on the final coloring,
the number of conflicting edges, and the runtime of
Picasso.

We limit our relative comparisons only to the small dataset
due to limitations imposed by specific implementations. In
fact, ColPack and Kokkos-EB run out of memory beyond
the small datasets (Kokkos-EB also runs out of memory for
the last instance of the small dataset). ECL-GC-R does not
support a graph size larger than what a 32-bit integer type can
represent (2 to 4B). All results presented here are averaged
over five runs. Five different seeds for pseudo-random number
generation are used for Picasso runs. For Picasso, we
present the results using only the greedy list coloring of
Algorithm 2 to color the conflict graph since it provided better
coloring relative to the static ordering algorithms.

We note that Picasso does not require loading the
entire graph into memory to color it. Instead, it computes
the conflicting subgraph on-the-fly at every iteration, thus

providing the memory improvement. This is fundamentally
different from the previous state-of-the-art algorithms. In fact,
ColPack, Kokkos-EB, and ECL-GC-R require loading of the
entire graph into memory before coloring it. Therefore, we
decided to be conservative in comparing the performance of
the different implementations, and we include the conflict
subgraph construction time for Picasso while we exclude
the graph construction time for all the other approaches. Under
these conservative settings, we show that Picasso is better
or comparable to ECL-GC-R and within a factor 2× slower
than Kokkos-EB. We also note that the explicit construction
of a complement graph is expensive for large instances.

The two main parameters of Picasso are the size of
palettes (P) and the color list (L). At any iteration of the algo-
rithm with V as the vertices considered, in our experiments,
P represents the percentage of vertices, and L = α log |V |,
where α is the coefficient. We omit the subscript since, in each
iteration, the same percentage value and α are used. We report
the number of colors, running time in seconds, and maximum
resident set size in GB for memory. Apart from these, we also
define a few other metrics as follows.

• Color percentage: percentage ratio between the number
of colors to the number of vertices of the input, i.e., C

|V | ∗
100. It represents the percentage of shrinkage of the Pauli
strings to the unitaries (impact on the application).

• Maximum Conflicting Edge percentage: The percent-
age ratio between the maximum number of conflicting
edges (across all iterations of Picasso) to the number
of complement edges of the graph, i.e., |Ec|

|E| ∗ 100.

A. Quality and Memory Comparisons

TABLE III: Quality comparisons of the algorithms. Results in
bold are the best coloring. Norm.: P = 12.5%, α = 2; Aggr.:
P = 3%, α = 30.

Problem ColPack Picasso Kokkos-EB ECL-GC

LF SL DLF ID Norm. Aggr.

H6 3D sto3g 2479 902 901 952 1425.4 †880.6 1040.17 943
H6 2D sto3g 5389 1598 1580 1634 2901.5 †1587.4 1749.17 1596
H6 1D sto3g 5771 1672 1601 1689 3036.1 †1650.4 1815.83 1642
H4 2D 631g 10049 1922 1694 1917 3579.8 1784.2 1772.67 1860
H4 3D 631g 15883 2729 2633 2668 5431.4 †2606 2478.50 2596
H4 1D 631g 19412 3241 2943 3233 6538 3212.8 3426.17 3098
H4 2D 6311g 72493 8615 6944 8628 22463.8 8917.4 NA NA

1) Small Dataset: Tables III and IV show the number of
colors achieved and the memory requirements of the compared
algorithms for the small dataset, respectively. We experimented
with four ordering heuristics for sequential greedy coloring
that are commonly considered in the literature: Largest First
Degree (LF), Smallest Degree Last (SL), Dynamic Largest
Degree First (DLF), and Incidence Degree (ID). The previous
study on unitary partitions [13], [20] only considered LF
greedy coloring algorithm. We refer you to the excellent survey
of Gebremedhin et al. [2] for details on vertex orderings.

Table III reports the average number of colors over five
runs for all the algorithms. We show results from two different
configurations of Picasso: i) Normal: P = 12.5%, α = 2
and ii) Aggressive: P = 3%, α = 30. We observe that

8

Picasso always produces fewer colors than the LF heuris-
tic using Picasso’s normal mode. We find that the DLF
heuristics provide the best coloring. However, the aggressive
configuration of Picasso provides coloring that is within
5% in 4/7-th of the inputs (marked with † in Table III), and
within 10% in all cases except the largest of the small dataset.
Finally, we observe that ECL-GC-R provides better coloring
than Kokkos-EB on 4/6-th of the inputs for which they could
compute a solution. In both cases, the coloring provided by
Picasso’s aggressive configuration is better or within 5% of
what is obtained through ECL-GC-R and Kokkos-EB.

TABLE IV: Memory comparison of the algorithms: Maximum
resident memory in GB

Problem ColPack Picasso

Norm. Aggr. Kokkos-EB ECL-GC-R

H6 3D sto3g 0.38 0.08 0.23 1.19 0.30
H6 2D sto3g 1.52 0.16 0.90 4.50 0.77
H6 1D sto3g 1.68 0.17 0.97 4.93 0.83
H4 2D 631g 2.72 0.20 1.24 6.81 1.10
H4 3D 631g 5.66 0.31 3.10 15.69 2.37
H4 1D 631g 10.77 0.38 4.31 23.69 3.51
H4 2D 6311g 140.23 2.06 57.12 NA NA

Table IV shows the maximum resident memory in GB of the
reference implementations for the small dataset. We find that
the normal configuration of Picasso is the most memory
efficient. In particular, it requires 68× lesser memory than the
ColPack for H4 2D 6311g while Kokkos-EB and ECL-GC-
R run out of memory and couldn’t compute a solution for
the same instance. We observe between 14× and 60× lower
memory utilization when comparing Picasso’s normal mode
to Kokkos-EB, and a reduction in memory usage of ≈ 5×
when considering Picasso’s aggressive mode. ECL-GC-R
shows to be more memory efficient than Kokkos-EB and is
comparable to Picasso’s aggressive mode. However, ECL-
GC-R memory optimizations come with runtime penalties that
we will detail in our performance evaluation (§ VII-B).

0.5 1.0 1.5 2.0

of Vertices ×106

0.1

1.0

10.0

M
ax

C
on

f.
E

dg
es

(%
)

Fig. 2: Input dataset scaling on the iterative GPU implemen-
tation up to 2 million vertices. α = 2, P = 12.5%. The black
dashed line in the top plot denotes the maximum conflicting
edge ratio supported by a 40GB NVIDIA A100.

2) Medium and Large Dataset: As mentioned earlier, none
of the compared algorithms could generate coloring for these
inputs; we will only discuss results obtained from Picasso.
Using P = 12.5% and α = 2, we could color all the
medium inputs. We even observe a slight quality improvement
compared to the small dataset. For the chosen parameters, the
color percentage is 14–15% (as a percent of |V |), whereas
for the same parameter setting, Picasso achieved 14–16%
for the smaller dataset (see Table III). For the four large
inputs (with over 1 Trillion edges), we set P = 12.5% as
before, but changed α = 1. We were then able to generate
coloring for all the large instances with this parameter except
the largest one, which ran out of GPU memory. For the
first three inputs of the large dataset, Picasso achieved a
color percentage of 16.2–16.4%. These results suggest that
Picasso can achieve reasonably high-quality coloring even
for larger datasets, for which none of the current state-of-the-
art GPU implementations included in our study were able
to color within the 40 GB of available GPU memory of
our system. Due to the quadratic scaling of the complement
edges relative to the number of Pauli strings, an increasingly
smaller conflicting-edge ratio is needed to satisfy memory
requirements for larger problems. This can be observed in
Fig. 2 where the black dashed line traces the limits of the
maximum fraction of conflict edges (%) that can fit the A100
for each input. We address the memory issue by choosing
more conservative parameters (P and α) as demonstrated for
the largest inputs in our dataset.

B. Performance Evaluation

1) CPU-only Vs. GPU-assisted Implementation: We report
the speedup of our GPU implementation over the CPU-only
implementation of Picasso in Table V. We show the average
time over five runs for the conflict graph construction and
the total time of the CPU-only implementation in the 2nd

and 3rd columns, respectively. Here, the reported conflict
graph construction time includes the cumulative time spent
in building the conflict graphs during each iteration of the
algorithm. The process of building conflict graph accounts for
over 98% of execution time (geo. mean) for these problems.
We accelerate the conflict graph build on GPUs (§ V). The
last two columns of Table V report the speedup of our
GPU implementation with respect to the conflict graph build
step and the total runtime. We see that as the problem size
increases, the speedup also increases, and we expect that trend
to continue for even larger problems. We report results only
for the small datasets because we used a cut-off time of 1 hour,
and the CPU implementation was able to complete only the
small dataset within that time budget. The geometric mean of
the speed up for the conflict graph construction step is ∼60×,
and that results into a ∼16× speed up for the entire application
(geo. mean). We note that our GPU implementation produces
exactly the same coloring as the CPU-only one because the
conflict graph construction is deterministic.

2) Performance on Medium and Large Dataset: Fig. 3
shows the running time (with a breakdown in components)

9

TABLE V: Runtime comparison for CPU only and GPU
assisted implementation. P = 12.5%, α = 2

CPU only GPU assisted

Problem Graph Build Total Graph Build Total
Time(s) Time(s) Speedup Speedup

H6 3D sto3g 3.14 3.26 24.37 2.21
H6 2D sto3g 14.87 15.19 43.76 8.94
H6 1D sto3g 16.35 16.69 45.36 9.75
H4 2D 631g 24.47 24.92 51.55 13.41
H4 3D 631g 57.67 58.40 73.21 26.30
H4 1D 631g 91.02 92.00 83.85 35.25
H4 2D 6311g 1,428.94 1,436.10 173.36 110.90

Geo. Mean 59.54 15.98

H4
3D

63
11

g

H8
2D

sto
3g

H8
1D

sto
3g

H4
1D

63
11

g

H8
3D

sto
3g

H6
3D

63
1g

H10
3D

sto
3g

H6
2D

63
1g

0

250

500

750

Ti
m

e
(s

)

Assignment
Conflict Graph
Conflict Coloring

Fig. 3: Input dataset scaling on the iterative GPU implemen-
tation up to 2 million vertices. α = 2, P = 12.5%.

for all the medium and one of the large datasets for our GPU
implementation. The problems are sorted from left to right,
with the smallest problem on the left. For all the inputs, we
set P = 12.5%, and α = 2. We see that the conflict coloring
that happens in CPU dominates the runtime. Despite this, we
were able to color the largest graph with over 1 Trillion edges
within 800 seconds with a color percentage ranging between
14–15%. For detailed quality results, see § VII-A2.

C. Performance Comparison with Kokkos-EB and ECL-GC-R

Fig. 4 compares Picasso to the current state-of-the-art
GPU implementations of graph coloring: Kokkos-EB and
ECL-GC-R. The study is limited to the small dataset due to
memory constraints imposed by specific implementations. We
study quality of solution in terms of number of colors produced
by the implementations, memory usage, and execution time.
The results in Fig. 4 are normalized with respect to ECL-GC-
R. We fixed α = 4.5 and we varied P from 1% up to 15% in
our Picasso runs. We observe that the quality of solution
achieved by Picasso increases when reducing the palette
size (P). When P = 1%, Picasso matched the quality of
solution of Kokkos-EB and ECL-GC-R (within 5%–15%).

Fig. 4 shows that ECL-GC-R produces the best quality
results at the expense of a much longer execution time.
In comparison, Picasso’s runs with P = 1% completed
between 0.44× and 0.60× the time used by ECL-GC-R.
Kokkos-EB approach results in the fastest execution time:

between 0.06× and 0.15× the time of ECL-GC-R. However,
Kokkos-EB uses between 5.83× and 6.74× the memory used
by ECL-GC-R while Picasso had comparable or reduced
memory usage (0.99 × – 0.32×) with respect to the same
baseline.

D. Parameter Sensitivity

The heatmap in Fig. 5 shows the impact of P and α on
the final colors, conflicting edges, and execution time for
a representative input (H4 2D 6311g). The heatmaps show
normalized quantities with respect to what is observed for the
same input graph. Therefore, as a measure of quality we report
the fraction of colors with respect to the number of vertices
in the input (lower is better) while we report execution time
and the normalized fraction of the total number of conflicting
edges processed by the algorithm as measures of the work
done by the algorithm (lower is better).

The general trend favors smaller P and larger α to achieve
a lower number of final colors at the cost of extra work.
Conversely, larger P and smaller α lead to lower conflicting
edges, and therefore, lower memory requirements and lead to
faster execution time. We observed similar trends on all our
datasets. These observations led us to design the approach in
§ VI to jointly minimize work and the size of the coloring by
controlling P and α.

VIII. CONCLUSIONS AND FUTURE WORK

We demonstrated the memory efficiency of Picasso using
a large set of inputs and compared its performance with state-
of-the-art approaches for graph coloring. In the realm of quan-
tum computing, the introduction of Picasso marks a notable
advancement. It is, quite plausibly, the inaugural scalable
graph algorithm and implementation tailored for Hamiltonian
and wave function partitioning that surpasses the capabilities
of contemporary state-of-the-art quantum emulators. What
amplifies its significance is its versatile nature; the same tool
can be adeptly employed in qubit tapering, thereby reducing
the effective number of qubits required for a given problem.
When synergized with other methodologies, such as single ref-
erence guidance [13], Picasso promises the ability to solve
systems comprising 100 to 1000 spin orbitals (i.e. qubits). It is
within these vast and complex systems that the much-vaunted
quantum advantage is believed to manifest, positioning our
tool at the forefront of a transformative computational frontier.

Our future work will focus on developing distributed multi-
GPU parallel implementations along with new algorithms for
predicting P and α values to enable better trade-offs for
quality and performance. We plan to further optimize our
algorithm to address inputs from diverse applications with
varying degrees of sparsity. We also plan to develop efficient
algorithms for clique partitioning that explore applications
beyond quantum computing. To the best of our knowledge, this
is the first of its kind study for computing coloring of dense
graphs on limited memory accelerator platforms and believe
that it will enable several applications that critically depend
on the computation of clique partitioning and graph coloring,

10

Kokkos051015

P(%)

1.00

1.25

1.50

1.75

2.00

R
el

at
iv

e
Fi

na
l

C
ol

or
s

Kokkos051015

P(%)

1

2

3

4

5

6

7

R
el

at
iv

e
M

em
or

y
R

eq
.

Kokkos051015

P(%)

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e
Ti

m
e

H6 2D sto3g H6 1D sto3g H4 2D 631g H4 3D 631g H4 1D 631g

Fig. 4: Performance comparison of Picasso and Kokkos-EB on the small datasets relative to ECL-GC-R execution time.
For Picasso runs, P is varied and α = 4.5

1 5 10 15 20
P (%)

0.5

1.5

2.5

3.5

4.5

α

1 5 10 15 20
P (%)

1 5 10 15 20
P (%)

10 15 20

Final Colors (%)

25 50 75

Max |Ec| (%)

75 150 225

Total Time (s)

Fig. 5: Impact of P and α using H4 2D 6311g on final colors,
number of conflicting edges and runtime for different inputs
(lighter color is better).

as well as enable the development of memory-efficient graph
algorithms.

ACKNOWLEDGEMENT

The research is supported by the Laboratory Funded Re-
search and Development at the Pacific Northwest National
Laboratory (PNNL), the U.S. DOE Exascale Computing
Project’s (ECP) (17-SC-20-SC) ExaGraph codesign center at
PNNL, and NSF awards to North Carolina State University.

REFERENCES

[1] R. R. Lewis, A Guide to Graph Colouring: Algorithms
and Applications, 1st. Springer Publishing Company,
Incorporated, 2015, ISBN: 3319257285.

[2] A. H. Gebremedhin, F. Manne, and A. Pothen, “What
color is your jacobian? graph coloring for computing
derivatives,” SIAM Review, vol. 47, no. 4, pp. 629–705,
2005. DOI: 10.1137/S0036144504444711.

[3] A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and
A. Pothen, “ColPack: Software for graph coloring and
related problems in scientific computing,” ACM Trans.
Math. Softw., vol. 40, no. 1, 2013, ISSN: 0098-3500.
DOI: 10.1145/2513109.2513110. [Online]. Available:
https://doi.org/10.1145/2513109.2513110.

[4] M. Deveci, E. G. Boman, K. D. Devine, and S. Raja-
manickam, “Parallel graph coloring for manycore archi-
tectures,” in 2016 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), IEEE, 2016,
pp. 892–901.

[5] G. Alabandi and M. Burtscher, “Improving the speed
and quality of parallel graph coloring,” ACM Trans.
Parallel Comput., vol. 9, no. 3, 2022, ISSN: 2329-4949.
DOI: 10.1145/3543545. [Online]. Available: https://doi.
org/10.1145/3543545.

[6] S. Rajamanickam, S. Acer, L. Berger-Vergiat, et al.,
“Kokkos kernels: Performance portable sparse/dense
linear algebra and graph kernels,” arXiv preprint
arXiv:2103.11991, 2021.

[7] A. Kandala, A. Mezzacapo, K. Temme, et al.,
“Hardware-efficient variational quantum eigensolver
for small molecules and quantum magnets,” Nature,
vol. 549, pp. 242–246, 2017. DOI: 10.1038/nature23879.

[8] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-
Guzik, “The theory of variational hybrid quantum-
classical algorithms,” New J. Phys., vol. 18, no. 2,
p. 023 023, 2016. DOI: 10 . 1088 / 1367 - 2630 / 18 / 2 /
023023.

[9] T.-C. Yen, V. Verteletskyi, and A. F. Izmaylov, “Measur-
ing all compatible operators in one series of single-qubit
measurements using unitary transformations,” J. Chem.
Theory Comput., vol. 16, no. 4, pp. 2400–2409, 2020.
DOI: 10.1021/acs.jctc.0c00008.

[10] S. Assadi, Y. Chen, and S. Khanna, “Sublinear algo-
rithms for (∆ + 1) vertex coloring,” in Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, SIAM, 2019, pp. 767–786.
DOI: 10.1137/1.9781611975482.48. [Online]. Available:
https://doi.org/10.1137/1.9781611975482.48.

[11] P. Jordan and E. Wigner, “Über das paulische
Äquivalenzverbot,” Z. Physik, vol. 47, pp. 631–651,
1928. DOI: 10.1007/BF01331938.

[12] S. B. Bravyi and A. Y. Kitaev, “Fermionic quantum
computation,” Ann. Phys., vol. 298, no. 1, pp. 210–226,
2002. DOI: 10.1006/aphy.2002.6254.

11

https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1145/2513109.2513110
https://doi.org/10.1145/2513109.2513110
https://doi.org/10.1145/3543545
https://doi.org/10.1145/3543545
https://doi.org/10.1145/3543545
https://doi.org/10.1038/nature23879
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1021/acs.jctc.0c00008
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1007/BF01331938
https://doi.org/10.1006/aphy.2002.6254

[13] B. Peng and K. Kowalski, “Mapping renormalized
coupled cluster methods to quantum computers through
a compact unitary representation of nonunitary op-
erators,” Physical Review Research, vol. 4, no. 4,
p. 043 172, 2022.

[14] M. R. Garey and D. S. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979, ISBN: 0-7167-1044-7.

[15] J. Bhasker and T. Samad, “The clique-partitioning
problem,” Computers & Mathematics with Applications,
vol. 22, no. 6, pp. 1–11, 1991.

[16] J. Schwinger, “Unitary operator bases,” Proc. Nat.
Acad. Sci. USA, vol. 46, no. 4, pp. 570–579, 1960. DOI:
10.1073/pnas.46.4.570.

[17] A. Klappenecker and M. Rötteler, “Constructions of
mutually unbiased bases,” in Finite Fields and Applica-
tions, G. L. Mullen, A. Poli, and H. Stichtenoth, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 137–144.

[18] J. B. Altepeter, D. F. V. James, and P. G. Kwiat, “4 qubit
quantum state tomography,” in Quantum State Estima-
tion, M. Paris and J. Řeháček, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 113–145. DOI:
10.1007/978-3-540-44481-7 4.

[19] P. Gokhale, O. Angiuli, Y. Ding, et al., “O(N3) Mea-
surement cost for variational quantum eigensolver on
molecular hamiltonians,” IEEE Trans. Qunatum Eng.,
vol. 1, pp. 1–24, 2020. DOI: 10 . 1109 / TQE . 2020 .
3035814.

[20] A. F. Izmaylov, T.-C. Yen, R. A. Lang, and V. Vertelet-
skyi, “Unitary partitioning approach to the measure-
ment problem in the variational quantum eigensolver
method,” Journal of chemical theory and computation,
vol. 16, no. 1, pp. 190–195, 2019.

[21] M. Luby, “A simple parallel algorithm for the maximal
independent set problem,” SIAM Journal on Computing,
vol. 15, no. 4, pp. 1036–1053, 1986. DOI: 10 . 1137 /
0215074.

[22] M. T. Jones and P. E. Plassmann, “A parallel graph
coloring heuristic,” SIAM Journal on Scientific Comput-
ing, vol. 14, no. 3, pp. 654–669, 1993. DOI: 10.1137/
0914041.

[23] Ü. V. Çatalyürek, J. Feo, A. H. Gebremedhin, M. Halap-
panavar, and A. Pothen, “Graph coloring algorithms for
multi-core and massively multithreaded architectures,”
Parallel Computing, vol. 38, no. 10, pp. 576–594,
2012, ISSN: 0167-8191. DOI: https : / / doi . org / 10 .
1016 / j . parco . 2012 . 07 . 001. [Online]. Available:
https : / / www. sciencedirect . com / science / article / pii /
S0167819112000592.

[24] N. Quang Anh Pham and R. Fan, “Efficient algorithms
for graph coloring on GPU,” in 2018 IEEE 24th Interna-
tional Conference on Parallel and Distributed Systems
(ICPADS), 2018, pp. 449–456. DOI: 10.1109/PADSW.
2018.8644624.

[25] I. Bogle, E. G. Boman, K. Devine, S. Rajamanickam,
and G. M. Slota, “Distributed memory graph coloring
algorithms for multiple GPUs,” in 2020 IEEE/ACM 10th
Workshop on Irregular Applications: Architectures and
Algorithms (IA3), 2020, pp. 54–62. DOI: 10 . 1109 /
IA351965.2020.00013.

[26] Ü. V. Çatalyürek, F. Dobrian, A. Gebremedhin, M.
Halappanavar, and A. Pothen, “Distributed-memory par-
allel algorithms for matching and coloring,” in 2011
IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops and Phd Forum, 2011,
pp. 1971–1980. DOI: 10.1109/IPDPS.2011.360.

[27] D. Bozdağ, U. V. Çatalyürek, A. H. Gebremedhin, F.
Manne, E. G. Boman, and F. Özgüner, “Distributed-
memory parallel algorithms for distance-2 coloring and
related problems in derivative computation,” SIAM Jour-
nal on Scientific Computing, vol. 32, no. 4, pp. 2418–
2446, 2010. DOI: 10.1137/080732158.

[28] M. Luby, “Removing randomness in parallel computa-
tion without a processor penalty,” Journal of Computer
and System Sciences, vol. 47, no. 2, pp. 250–286, 1993.

[29] D. Achlioptas and M. S. O. Molloy, “The analysis of a
list-coloring algorithm on a random graph,” in 38th An-
nual Symposium on Foundations of Computer Science,
FOCS ’97, Miami Beach, Florida, USA, October 19-
22, 1997, IEEE Computer Society, 1997, pp. 204–212.
DOI: 10.1109/SFCS.1997.646109. [Online]. Available:
https://doi.org/10.1109/SFCS.1997.646109.

[30] M. Mitzenmacher and E. Upfal, Probability and Com-
puting: Randomized Algorithms and Probabilistic Anal-
ysis. Cambridge University Press, 2005, ISBN: 978-
0-521-83540-4. DOI: 10 . 1017 / CBO9780511813603.
[Online]. Available: https : / / doi . org / 10 . 1017 /
CBO9780511813603.

[31] S. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach, 3rd. USA: Prentice Hall Press, 2009,
ISBN: 0136042597.

[32] I. Bogle, G. M. Slota, E. G. Boman, K. D. Devine, and
S. Rajamanickam, “Parallel graph coloring algorithms
for distributed GPU environments,” Parallel Computing,
vol. 110, p. 102 896, 2022.

[33] G. Alabandi, E. Powers, and M. Burtscher, “Increasing
the parallelism of graph coloring via shortcutting,” in
Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2020,
pp. 262–275.

12

https://doi.org/10.1073/pnas.46.4.570
https://doi.org/10.1007/978-3-540-44481-7_4
https://doi.org/10.1109/TQE.2020.3035814
https://doi.org/10.1109/TQE.2020.3035814
https://doi.org/10.1137/0215074
https://doi.org/10.1137/0215074
https://doi.org/10.1137/0914041
https://doi.org/10.1137/0914041
https://doi.org/https://doi.org/10.1016/j.parco.2012.07.001
https://doi.org/https://doi.org/10.1016/j.parco.2012.07.001
https://www.sciencedirect.com/science/article/pii/S0167819112000592
https://www.sciencedirect.com/science/article/pii/S0167819112000592
https://doi.org/10.1109/PADSW.2018.8644624
https://doi.org/10.1109/PADSW.2018.8644624
https://doi.org/10.1109/IA351965.2020.00013
https://doi.org/10.1109/IA351965.2020.00013
https://doi.org/10.1109/IPDPS.2011.360
https://doi.org/10.1137/080732158
https://doi.org/10.1109/SFCS.1997.646109
https://doi.org/10.1109/SFCS.1997.646109
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1017/CBO9780511813603

	Introduction
	Problem Formulation
	Quantum computing problem
	Connection to Clique partitioning and Graph coloring

	Related Work
	Our Algorithm
	Conflict Graph Construction
	Coloring the Conflict Graph
	Analysis of the Algorithm

	Parallel GPU implementation
	Prediction of Palette Size
	Experimental Evaluation
	Quality and Memory Comparisons
	Small Dataset
	Medium and Large Dataset

	Performance Evaluation
	CPU-only Vs. GPU-assisted Implementation
	Performance on Medium and Large Dataset

	Performance Comparison with Kokkos-EB and ECL-GC-R
	Parameter Sensitivity

	Conclusions and Future Work

